Performance of Thin Separate Absorption, Charge, and Multiplication Avalanche Photodiodes
نویسندگان
چکیده
Previously, it has been demonstrated that resonantcavity-enhanced separate-absorption-and-multiplication (SAM) avalanche photodiodes (APD’s) can achieve high bandwidths and high gain–bandwidth products while maintaining good quantum efficiency. In this paper, we describe a GaAs-based resonant-cavity-enhanced SAM APD that utilizes a thin charge layer for improved control of the electric field profile. These devices have shown RC-limited bandwidths above 30 GHz at low gains and gain–bandwidth products as high as 290 GHz. In order to gain insight into the performance of these APD’s, homojunction APD’s with thin multiplication regions were studied. It was found that the gain and noise have a dependence on the width of the multiplication region that is not predicted by conventional models. Calculations using width-dependent ionization coefficients provide good fits to the measured results. These calculations indicate that the gain–bandwidth product depends strongly on the charge layer doping and on the multiplication layer thickness and, further, that even higher gain–bandwidth products can be achieved with optimized structures.
منابع مشابه
Excess Noise in GaAs Avalanche Photodiodes with Thin Multiplication Regions
It is well known that the gain–bandwidth product of an avalanche photodiode can be increased by utilizing a thin multiplication region. Previously, measurements of the excess noise factor of InP–InGaAsP–InGaAs avalanche photodiodes with separate absorption and multiplication regions indicated that this approach could also be employed to reduce the multiplication noise. This paper presents a sys...
متن کاملResonant normal-incidence separate-absorption-charge-multiplication Ge/Si avalanche photodiodes.
In this work the impedance of separate-absorption-charge-multiplication Ge/Si avalanche photodiodes (APD) is characterized over a large range of bias voltage. An equivalent circuit with an inductive element is presented for modeling the Ge/Si APD. All the parameters for the elements included in the equivalent circuit are extracted by fitting the measured S(22) with the genetic algorithm optimiz...
متن کاملAlxIn1-xAsySb1-y photodiodes with low avalanche breakdown temperature dependence.
We report AlxIn1-xAsySb1-y PIN and Separate Absorption, Charge and Multiplication (SACM) avalanche photodiodes (APDs) with high temperature stability. This work is based on measurements of avalanche breakdown voltage of these devices for temperatures between 223 K and 363 K. Breakdown voltage temperature coefficients are shown to be lower than those of APDs fabricated with other materials with ...
متن کاملOptimization of InGaAs/InAlAs Avalanche Photodiodes
In this paper, we report a two-dimensional (2D) simulation for InGaAs/InAlAs separate absorption, grading, charge, and multiplication avalanche photodiodes (SAGCM APDs) and study the effect of the charge layer and multiplication layer on the operating voltage ranges of APD. We find that with the increase of the thicknesses as well as the doping concentrations of the charge layer and the multipl...
متن کاملPlasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes
Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998